return
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
May 06,2021

Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya

Published in Biogeosciences, FEB 2021

To better understand the nutrient assimilation characteristics of subtropical phytoplankton, deep-water addition incubation experiments were carried out on surface waters collected at seven stations across the subtropical North and South Pacific Ocean. These deep-water additions induced phytoplankton blooms with nutrient drawdown at all stations. The drawdown ratios of dissolved inorganic nitrogen (DIN) to phosphate (PO4) varied from 14.1 to 30.7 at the PO4-replete stations in the central North Pacific (CNP) and eastern South Pacific (ESP). These ratios were similar to the range represented by the canonical Redfield ratio (16) through to typical particulate N:P ratios in the surface subtropical ocean (28). In contrast, lower DIN:PO4 drawdown ratios (7.7–13.3) were observed in induced blooms at the PO4-depleted stations in the western North Pacific (WNP). The DIN:PO4 drawdown ratios in the PO4-replete ESP were associated with eukaryote-dominated blooms, while those in the PO4-depleted WNP were associated with eukaryotic and cyanobacterial blooms. The surplus PO4 assimilation, relative to DIN, by phytoplankton in the WNP was not expected based on their typical cellular N:P ratio and was likely due to the high PO4 uptake capability as induced by low-PO4-adapted phytoplankton. The low- and high-P* ( DIN/16) regimes geographically corresponded to the low and high DIN:PO4 drawdown ratios in the WNP and the CNP or ESP, respectively. The basin-wide P* distribution in the oligotrophic Pacific surface waters showed a clear regional trend from low in the WNP (<50 nM) to high in the ESP (>100 nM). These results suggest that the subtropical phytoplankton blooms as observed in our experiments could be an important factor controlling P* as well as the commonly recognized dinitrogen fixation and denitrification characteristics.

Fig.Scatter plots of the control-corrected mean concentrations of PO4 against DIN in the incubation experiments at seven stations. Linear regression lines with their parameters (1  slope, PO4 intercept, and r2) at seven stations were denoted by the different colours. Errors of 1  slope and PO4 intercept represent 95 % confidence intervals.

Hashihama, F., Saito, H., Kodama, T., Yasui-Tamura, S., Kanda, J., Tanita, I., Ogawa, H., Woodward, E. M. S., Boyd, P. W., and Furuya, K.: Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters, Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, 2021.

return
Copyright @ 2017 NPOCE. All Rights Reserved.